

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

Core Mathematics 1

THURSDAY 7 JUNE 2007

Morning

4721/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

You are not allowed to use a calculator in this paper.

This document consists of 4 printed pages.

© OCR 2007 [Y/102/2693]

OCR is an exempt Charity

[Turn over

1 Simplify $(2x+5)^2 - (x-3)^2$, giving your answer in the form $ax^2 + bx + c$. [3]

2 (a) On separate diagrams, sketch the graphs of

(i)
$$y = \frac{1}{x}$$
, [2]

(ii)
$$y = x^4$$
. [1]

- (b) Describe a transformation that transforms the curve $y = x^3$ to the curve $y = 8x^3$. [2]
- 3 Simplify the following, expressing each answer in the form $a\sqrt{5}$.

(i)
$$3\sqrt{10} \times \sqrt{2}$$
 [2]

(ii)
$$\sqrt{500} + \sqrt{125}$$
 [3]

- 4 (i) Find the discriminant of $kx^2 4x + k$ in terms of k. [2]
 - (ii) The quadratic equation $kx^2 4x + k = 0$ has equal roots. Find the possible values of k. [3]

5

The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, is used to form the remaining three sides. The width of the enclosure is x metres.

(i) Show that the enclosed area, $A m^2$, is given by

$$A = 20x - 2x^2.$$
 [2]

- (ii) Use differentiation to find the maximum value of A.
- 6 By using the substitution $y = (x + 2)^2$, find the real roots of the equation

$$(x+2)^4 + 5(x+2)^2 - 6 = 0.$$
 [6]

7 (a) Given that
$$f(x) = x + \frac{3}{x}$$
, find $f'(x)$. [4]

(b) Find the gradient of the curve $y = x^{\frac{5}{2}}$ at the point where x = 4. [5]

© OCR 2007

4721/01 Jun07

[4]

8	(i) Express $x^2 + 8x + 15$ in the form $(x + a)^2 - b$.	[3]
	(ii) Hence state the coordinates of the vertex of the curve $y = x^2 + 8x + 15$.	[2]
	(iii) Solve the inequality $x^2 + 8x + 15 > 0$.	[4]
9	The circle with equation $x^2 + y^2 - 6x - k = 0$ has radius 4.	
	(i) Find the centre of the circle and the value of k .	[4]
	The points A (3, a) and B (-1, 0) lie on the circumference of the circle, with $a > 0$.	
	(ii) Calculate the length of AB, giving your answer in simplified surd form.	[5]
	(iii) Find an equation for the line AB.	[3]
10	(i) Solve the equation $3x^2 - 14x - 5 = 0$.	[3]
	A curve has equation $y = 3x^2 - 14x - 5$.	

3

(ii) Sketch the curve, indicating the coordinates of all intercepts with the axes. [3]
(iii) Find the value of c for which the line y = 4x + c is a tangent to the curve. [6]

4721/01 Jun07

1	(4x2 + 20x + 25) - (x2 - 6x + 9) = 3x ² + 26x + 16	M1 A1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \neq 0, b \neq 0, c \neq 0)$ One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
				SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(ii)		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction	B1 B1	2	
	or scale factor ¹ / ₂ in x direction		5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5} \times \sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90} \times \sqrt{2}$	M1		
	$= 6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	= $15\sqrt{5}$	A1	3	сао
			5	

A (1)	(1)2 1 1 1.			2
4 (i)	$(-4)^2 - 4 \times k \times k$ = 16 - 4k ²	M1 A1	2	Uses $b^2 - 4ac$ (involving <i>k</i>) 16 - 4k ²
(ii)	$16 - 4k^2 = 0$	M1		Attempts $b^2 - 4ac = 0$ (involving <i>k</i>) or
				attempts to complete square (involving
	$k^2 = 4$ k = 2	B1		<i>k</i>)
	k - 2 or $k = -2$	B1	3	
			5	
5 (i)	Length = $20 - 2x$	M1	5	Expression for length of enclosure in
- (1)				terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
	= 20x - 2x			
(ii)	<u>dA</u> = 20 – 4x	M1		Differentiates area expression
	dx			
	For max, $20 - 4x = 0$			1
	x = 5 only	M1		Uses $\frac{dy}{dx} = 0$
	Area = 50	A1		dx
		A1	4	
			6	
6	Let $y = (x + 2)^2$	B1		Substitute for $(x + 2)^2$ to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
	(y · 0)(y · 1) = 0	A1		Both values for y correct
	y = -6 or y = 1			-
	$(v + 0)^2 = 1$	M1		Attempt to work out x
	$(x + 2)^2 = 1$ x = -1	A1 A1	6	One correct value Second correct value and no extra real
	or $x = -3$			values
7 (a)	$f(x) = x + 3x^{-1}$	M1	6	Attempt to differentiate
, (u)		1111		
	$f'(x) = 1 - 3x^{-2}$	A1		First term correct
		A1		x ⁻² soi www
		A1	4	Fully correct answer
(b)	$dv = 5 = \frac{3}{2}$	M1		Use of differentiation to find gradient
	$\frac{dy}{dx} = \frac{5}{2} \mathbf{x}^{\frac{3}{2}}$	•		$\frac{5}{2}$ x ^c
		B1		
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2}\sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	dx = 20	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.
	I			

8 (i)	$(x + 4)^2 - 16 + 15$	B1	a = 4
	$= (x + 4)^2 - 1$	M1 A1 3	15 – their a ² cao in required form
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate
		DIILZ	Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
(iii)	$x^{2} + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4	x < -5, x > -3
	x < -5, x < -5	AI 4	(not wrapped, strict inequalities, no
0 (i)	$(y - 2)^2 = 0 + y^2 + z = 0$	9	
9 (i)	(x - 3)2 - 9 + y2 - k = 0 (x - 3) ² + y ² = 9 + k	B1	$(x-3)^2$ soi Correct centre
	Centre (3, 0) 9 + $k = 4^2$	B1	
	$\begin{array}{c} 9+k=4^{-}\\ k=7 \end{array}$	M1 A1 4	Correct value for <i>k</i> (may be embedded)
			Alternative method using expanded
			<u>form:</u> Centre (- <i>g</i> , - <i>f</i>) M1 Centre (3, 0) A1
			$4 = \sqrt{f^2 + g^2 - (-k)} \qquad M1$
			k = 7 A1
(ii)	$(3 - 3)^2 + y^2 = 16$	M1	Attempt to substitute $x = 3$ into
	$y^2 = 16$ y = 4	A1	original equation or their equation
	y - 4	AI	$y = 4$ (do not allow ± 4)
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16 + a^2}$
	$= 4\sqrt{2}$	A1 5	сао
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
	y - 0 = m(x + 1) or $y - 4 = m(x - 3)$	M1	Attempts equation of straight line through their A or B with their gradient
	y = x + 1	A1 3	Correct equation in any form with simplified constants
		12	

10 (i)	(3x + 1)(x - 5) = 0 x = $\frac{-1}{3}$ or x = 5	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
(ii)		B1	SR B1 for x = 5 spotted www Positive quadratic (must be reasonably symmetrical)
	· · · · · · · · · · · · · · · · · · ·	B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 x = 3	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$		
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0$ has one solution	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	(-18) ² − (4 x 3 x (-5 −c)) = 0	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32